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Summary of Research Work 

The specification spectrum for the proposed Space 
Transportation System (STS) places heavy emphasis on the 
development of reusable avionics subsystems having special 
features such as vehicle evaluation and reduction of ground 
support for mission planning, contingency response and 
verification and validation. According to the recent report 
of the National Commission on Space, PIONEERING THE SPACE 
FRONTIER, the concept of aerobraking for orbit transfer has 
been recognized as one of the critical technologies and 
recommended for demonstration projects in building the 
necessary technology base for pioneering the space frontier. 

As a first step in developing the necessary guidance 
and control strategies for aerospace vehicles, the dynamic 
equations of motion for both coplanar and noncoplanar 
Aeroassisted Orbit Transfer Vehicles (AOTV’s) have been 
formulated in different ways using time, altitude, or energy 
as independent variable. .The formulation with energy seems 
to be promising. Trajectory simulatibns have been obtained 
for these formulations, with particular emphasis on the 
effect of atmospheric density scale height on the 
performance of these vehicles. Simulations have shown that 
there is a considerable discrepancy between the plots with 
constant scale height and variable scale height. (see item 
(viii) in the enclosed list of publications). 

A simplified method of matched asymptotic expansions 
has been developed where the common part in composite 
solution is generated as a polynomial in stretched variable 
instead of actually evaluating the same from outer solution. 
This methodology has been applied to the solution of the 
exact equations for three dimensional atmospheric entry 
problem. Here, it has been possible to obtain explicit 
relations between the constants of integration and the given 
initial conditions. This in in contrast to the earlier works 
where these relations led to a transcendental equation which 
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can only be solved by resorting to numerical methods on a 
digital computer. (See item ( x )  in the enclosed list of 
publications). 

Currently, a general optimization procedure using 
multiple shooting method for obtaining optimal guidance and 
control laws for orbital transfer vehicles, is being 
investigated, with a possibility of using the above 
mentioned simplified method of matched asymptotic 
expansions. 

During the same period, several related research works 
have been carried out and are briefly mentioned below. 

1. An overview of singular perturbations and time 
scales (SPaTS) in discrete control systems has been 
conducted focusing in three directions of modeling, analysis 
and control. The resulting tutorial-cum-survey paper has 
been accepted for presentation at an invited session, at 
IEEE Conference on Decision and Control, Los Angeles, CA, 
December 9-11, 1987. This session is being organized and 
chaired by Dr. D. S. Naidu, the co-principal investigator. 
A draft copy of the paper is enclosed. (See item ( v )  in the 
list of publications). 

2. An important work in the same period is the final 
preparation of the forthcoming book entitled, "SINGULAR 
PERTURBATION METHODOLOGY IN CONTROL SYSTEMS, authored by Dr. 
D. S. Naidu, the co-principal investigator, and being 
published under IEE Control Engineering Series, by Peter 
Peregrinus Limited, Stevenage Herts, England. This book is 
scheduled to appear in September 1987.(See item (i) in the 
enclosed list of publications). 

3. As an outgrowth of earlier work on singular 
perturbations and time scales in discrete control systems, 
it has been found that to a zeroth order approximation, 
these two approaches yield identical results. (See item 
(vi) in the enclosed list of publications). 

4. Other works are concerned with the items (ii), 
(iii), (iv), and (vii) in the list of publications. 

********** 
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The theory of s ingular  perturbations and t i m e  scales (SPATS) has been 

a powerful a n a l y t i c a l  tool i n  the analysis and synthesis of continuous and 

discrete cont ro l  systems.lr2 In  t h i s  technical note, we first consider a 

s i n g u l a r l y  perturbed discrete control  system. Using a s ingular  perturba- 

t i on  approach, ou ter  and correcticm subsystems are obtained. Next, by the  

appl ica t ion  of t i m e  scale approach via block diagonalization t ransf  orma- 
s 

t ions ,  the o r i g i n a l  system is decoupled i n t o  s l aw and f a s t  subsystems. I t  , 

w i l l  be shown that to a zeroth order approximation, the s ingular  

per turbat ion and time scale approaches yield equivalent r e su l t s .  Roughly 

speaking, the zeroth-order approximation is sometimes cal led the first 

approximation. This r e s u l t  is s i m i l a r  to a corresponding r e s u l t  i n  

continuous cont ro l  systems . 3 
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Consider a general form for linear, shift-invariant, singularly 

perturbed discrete systems a d  

x(k+l) All x(k) + h1-jA12z(k) + Blu(k) 

h 21 z(k+l) = h j AZ1x(k) + M22Z(k) + h j B2u(k) 

O < i < l ;  O C j C l  - -  - -  

where, x(k) and z(k) are "slow" and ,fast" state vectors of n and m dimen- 

sions respectively, u(k) is an r-dimensional control vector, h is a singu- 

lar perturbation parameter, and A's and B's are matrices of appropriate 

dimensionality. We formulate initial value problems With x(k=O) = x(0) and 

z(kd) = z(0) and note that similar results can be obtained for boundary 

value problems also. 

The three limiting cases of Eq. ( 1 )  result in 

(1) the C-model (i=O; F O ) ,  

x(k+l) = A x(k) + hA z(k) + B1u(k) 

z(k+l) = A x(k) + hA22z(k) + B2ulk) 
11 12 

21 

(2a) 

(2b) 

where the s m a l l  parameter h appears in the column of the system matrix, 

where the small parameter h appears in the of the system matrix, and 
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where t h e  small parameter h i s  posit ioned in an i d e n t i c a l  fashion to t h a t  

of t h e  continuous systems described by d i f f e r e n t i a l  equations.  

note, we consider only the C-model of Eq. (21, but the result can be 

extended to  the o the r  two models of 4 s .  (3) and (4 )  as w e l l .  The outer  

(degenerate)  subsystem, obtained by zeroth-order approximation (i.e., by 

making b o 1  of 4. (21, is 

I n  t h i s  

H e r e ,  w e  note t h a t  i n  the process of degeneration, x(k) has re ta ined  its 

i n i t i a l  condi t ion x( 0 )  8 whereas z(k) has l o s t  its i n i t i a l  condi t ion z ( 0  1 . 
In  order t o  recover t h i s  l o s t  i n i t i a l  condition, a cor rec t ion  subsystem is 

used.2 

are 

The transformations between the o r ig ina l  and co r rec t ion  var iab les  

Using Eq. ( 6 )  i n  Eq. (21, the  transformed system becomes, 
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hx (k+l) AllXc(k) + A 

zc(k+l) = Azlxc(k) + A 

2 (k) + B u (k) 

z (k) + B2uc(k) 
C 12 c I C  

22 c 

T h e  zeroth-order approxbmtfon (hr0) of Eq. (7) kCaeS, 

(7a) 

(7b) 

where, 

-1 
* A  - A  A 22 21 11 A12 

-1 
Bco = B2 - A21All B1 

The total solution consists of an outer solution and a correction solution 

as2 
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For the  present ,  to simplify the analysis ,  we a n i t  u (k)  and its associated 

funct ions . Then for zeroth-order approximation, the total  so lu t ion  is 

given by2 

our  cu r ren t  i n t e r e s t  is only zeroth-order approximations. Thus, from 

~ q s .  ( 5 )  and (91, we g e t  

and the correc t ion  functions as, 

( k i l l  = Acozc ( O )  (k)  ( 0 )  
Z 

C 



L e t  us consider again the s ingu la r ly  perturbed system of FQ. (2 ) .  w e  

now use the  t i m e  scale approach and obtain slow and f a s t  subsystems to a 

zeroth-order approximation. 

For decoupling the or ig ina l  system of Eq. (2 )  i n t o  slow and f a s t  

subsystems, the block diagonal izat ion transformations r e l a t i n g  the 

decoupled variables i n  terms of the o r ig ina l  var iables  are4 

x (k) = (I + hED)x(k) + hEz(k) (15a) 

z f ( k )  * Dx(k) + I f z ( k )  ( 1  Sb) 

8 S 

and transformations r e l a t i n g  the original variables and the decoupled 

var iab les  are 

Where Is(nxn) and I f (mxm)  are uni ty  matrices and D(mxn) and E(nxm) 

s a t i s f y  Riccati-type a lgebra ic  equations,  

hA22D - DAll  + h D A I P  - A2, = 0 

hE(AZ2 + DA12) - ( A l l  - hA D I E  + A 1 2  = 0 
12 

whose i t e r a t i v e  solut ions start w i t h  i n i t i a l  values of D i  = 

- A ~ j A 1 1 - ~  and E i  = A11-1A12. By using transformations given 

by Bq. (15) i n  Eq. (21, ue get the decoupled s l o w  and f a s t  subsystems as, 
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x (k+ l )  = A x (k) + B u(k)  

2 (k+l )  = hAfzf (k)  + B u(k)  

where, A s = A  - h A  D ; A f = A  

Bs = (Is + hED)B1 + hEB2 

2 
B = D B  + B  

S 8 s  8 

f f 

+ DA12 11 12 22 

f 1 

For zeroth-order approximation, 3 we get, 

-1 -1 Do = -A A 21 11 ; Eo = A12 

A80 = Afo = A22 - A21A11 A12 
-1 

-1 - A  A Bfo = B2 21 11 *1 
Bso = B1; 

Using Eq. (19) i n  Eq. (16) and (181, w! ge t  (omi t t ing  input  fo r  

simplicity 1 , 

Similar ly ,  using Bq. (19) i n  Bq. (151, we obtain, 



8 1 
Camparing the subsystems of Eqs. (13) and (14)  and the solution of plq. (11) 

obtained by using the singular perturbation approach with the corresponding 

subsystems of q. (21) and the solution of 4. (201, we find that they 

satisfy the same equations w i t h  the same initial conditions. Hence, 

Thus, we have shown that for a zeroth-order approximation, both singular 

perturbation and time scale approaches give identical results. Similar 

results can be established for other types of discrete systems 

characterized by Eqs. (3) and (4 ) .  

In this note, w e  have demonstrated for a zeroth-order approximation 

the equivalence of the subsystems obtained by the singular perturbation and 

time scale approaches. This result is akin to that in the singularly 

perturbed continuous systems. It has been seen that such an equivalence 

does exist for a first-order approximation also, the details of which are 

omitted due to the lengthy and cumbersame nature of the derivations. 

'Saksena, V. R., O'Reilly, J., and Kakotovic, P. v., "Singular 
Perturbations and Time-Scale Methods in Oontrol Theory: Survey," 
Automatica, Vol. 220, pp. 273-293, 1984. 

Z~aidu, D. s., and mo, A. K., Singular Perturbation Analysis of 
Discrete Control systems, mcture Notes in ~athematics, vol., 1154, 
Springer-Verlag, Berlin, 1985. 
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3Mahmoud, M. S., and Singh, M. G . ,  Large Scale Systems Modeling, 
Pergamon Press, oxford, 1981. 

4Kando, H. and xvazumi, T. 8 - Ini t ia l  Value Problems of Singularly 
Perturbed Discrete Systems Via The-Scale Decomposition," Int. J.  Systems 
Science, Vol. 14,  pp. 555-570, 1983. 
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A b s t r a c t :  

T h i s  p a p e r  o v e r v i e w s  r e c e n t  d e v e l o p m e n t s  i n  t h e  t h e o r y  
of s i n g u l a r  p e r t u r b a t i o n s  and  t i m e  scales  (SPTS) i n  t h e  
d i s c r e t e  control s y s t e m s .  The f o c u s  is i n  t h r e e  d i r e c t i o n s  
of  m o d e l i n g ,  a n a l y s i s  and  c o n t r o l .  F i r s t ,  w e  r e v i e w  s o u r c e s  
o f  d i s c r e t e  mode l s  arid t h e  e f f e c t  of d i s c r e t i r i n g  i n t e r v a l  
on t h e  model ing .  The a n a l y s i s  of  t w o - t i m e  scale  s y s t e m s  
b r i n g s  o u t  t y p i c a l  c h a r a c t e t i s t i c  f e a t u r e s  of SF'TS. I n  
c o n t r o l l i n g  t h e  t w o - t i m e  scale s y s t e m s ,  w e  a d d r e s s  t h e  
i m p o r t a n t  i s s u e  of  m u l t i r a t e  s ampl ing .  T h e  b i b l i o g r a p h y  
c o n t a i n s  o v e r  tOO titles. 

1 . INTRODUCTION 
The dynamics  of many c o n t r o l  s y s t e m s  is d e s c r i b e d  by 

h i g h  o r d e r  d i f f e r e n t i a l  e q u a t i o n s .  However, t h e  b e h a v i o u r  
i n  g o v e r n e d  by a f e w  dominan t  p a r a m e t e r s ,  a r e l a t i v e l y  m i n o r  
r o l e  b e i n g  p l a y e d  by t h e  r e m a i n i n g  p a r a m e t e r s  s u c h  as  small 
t i m e  c o n s t a n t s ,  m a s s e s ,  m o m e n t s  of i n e r t i a ,  i n d u c t a n c e s ,  and  
c a p a c i t a n c e s .  The p r e s e n c e  of t h e s e  " p a r a s i t i c "  p a r a m e t e r s  
is  o f t e n  t h e  s o u r c e  f o r  t h e  i n c r e a s e d  o r d e r  and  the 
" s t i f f n e s s "  of t h e  sys t em.  T h e  " c u r s e "  of t h e  
d i  mensi o n a l  i t y  coup1 e d  w i t h  sti f f ne56  poses f o r m i  dab1  e 
c o m p u t a t i o n a l  c o m p l e x i t i e s  f o r  t h e  a n a l y s i s  and  c o n t r o l  of 
S L I C ~  1 a r g e  sys t ems .  T h e  methodology of s i n g u l  ar 
p e r t u r b a t i o n s  and t i m e  scales (SPTS) is a " g i f t "  t o  c o n t r o l  
e n g i n e e r s .  A s  s u c h  i t  is v e r y  d e s i r a b l e  t o  f o r m u l a t e  many 
c o n t r o l  p r o b l e m s  t o  f i t  i n t o  t h e  framework of  t h e  
m a t h e m a t i c a l  t h e o r y  of SPTS which h a s  a r i c h  l i t e r a t u r e  ( 

Van Dyke 64, W a s o w  65, C o l e  68,  Eutuzov e t .  el . ,  70, Eckhaus  
73, 79, Nayfeh 73, 81, V a s i l e v a  and  Eutuzov 73, 78, Nayfeh 
and  MooI: 79, Eckhaus  and  d e  J a g e r  82,  Chang and  H o w e s  84 ,  
S m i t h  8 5 ) .  T h e  t h e o r y  o f  SPTS i n  c o n t i n u o u s  c o n t r o l  s y s t e m s  
h a 5  a t t a i n e d  a r e a s o n a b l e  l e v e l  of m a t u r i t y  and  is w e l l  
documeted  (Koko tov ic  and  P e r k i n s  72, O 'Mal l ey  7 4 ,  G e n e s i o  
and  M i l a n e s e  76 ,  K o k o t o v i c  et. el.,  76, 86, A r d e m a  83. 
K o k o t o v i c  84, 85, S a k s e n a  et. el . ,  84, Naidu 87). 

The methodology of  SPTS h a s  a n  i m p r e s s i v e  r e c o r d  o f  
a p p l i c a t i o n s  i n  a wide  s p e c t r u m  of  f i e l d s  s u c h  a5 c i r c u i t s  
( S a s t r y  and Desoer 811, n e t w o r k s  ( S a n n u t i  811, 
e lec t ros ta t ics  (Abraham-Shrauner 7 4 ) ,  e l e c t r o m a g n e t i c s  
( S e s h a d r i  7 6 ) ,  electrical  m e c h i n e s  ( Z a i d  et .  e l . ,  821, power 
s y s t e m s  ( C h o w  B Z ) ,  s e m i c o n d u c t o r s  ( M a r - k o w i c h  and  R i n g h o f f e r  
8 4 ) .  f l u i d  m e c h a n i c s  (Van Dyke 6 4 ) ,  s t r u c t u r a l  m e c h a n i c s  
( F l a h e r t y  and O 'Mal l ey  82), s o i l  m e c h a n i c s  ( D i c k e r  and  Babu 
741, f l i g h t  mechan ics  (Ardems. 77). celestial  m e c h a n i c s  
(Verhc t l s t  7 5 ) ,  g e o p h y s i c s  ( C a r r i e r  70 ) ,  c h e m i s t r y  (Cohen 
7 4 1 ,  thermodynamics  (Cooper  75), n u c l e a r  reactor d y n a m i c s  
(Reddy and  Sanni r t i  75), accoustics ( E i n a u d i  691, 
o c e a n o g r a p h y  ( R u i j t e r  791, b i o l o g y  ( C a r p e n t e r  771, 
b i o c h e m i s t r y  (Heineken  et. el . ,  671, e l o l c q y  (Naidu  and  



Rajagopalan 79), laserc, (Eckhaus et .  e l . ,  B 5 ) ,  and robot ic5  
(Chernousko and Shamaev 8 3 ) .  

Discrete system5 are very much prevelent  i n  science and 
engineering. There are three sources o f  d i s c r e t e  models 
described by d i f fe rence equatione conta in ing several 
parameters (Dorato and Levis 71). The f i r s t  source i s  
d i g i t a l  simulat ion, where ordinary d i f f e r n t i a l  equation€ are  
approximated by the  corresponding d i f f e rence  equations 
( H i  ldebrand 68, Abrahamsson et. el. ,  74, Hemker and M i l l e r  
79, Miranker 8 0 ) .  The study of  sampled-data con t ro l  systems 
and computer-based adaptive contro l  systems leads i n  a 
na tura l  way t o  another source of  d iscrete- t ime models (Kuo 
80). F i n a l l y ,  many economic, b i o l o g i c a l  and soc io log ica l  
systems are represented by d isc re te  models (Cadzow 73). I n  
s p i t e  of the  f a c t  t h a t  the  d i g i t a l  con t ro l  of  systems w i th  
widely separated eigenvalues was f i r s t  considered by 
stineman (651, t he  f i e l d  of rj ingular per tu rba t ions  and t ime 
scales i n  d i f f e rence  equations and i t s  app l i ca t i ons  t o  
d i sc re te  cont ro l  systems i s  of  recent o r g i n  on l y  (Comstocl:: 
and Hsiao 76, L o c a t e l l i  and Schiavoni 76, Hoppensteadt and 
Miranker 77, Naidu 77, Vasileva and Faminskaya 77, Jav id 79, 
Reinhardt 79, P h i l l i p s  80, Hajagopalan and Naidu 80, A t l u r i  
and K a o  81, Blankenship 81) .  

This paper overviews these recent developments i n  the  
theory of SF'TS i n  d i f fe rence equations and d i s c r e t e  con t ro l  
systems. The focus i s  on three d i rec t i ons  of modell ing, 
analys is  and con t ro l  . 
2. MODELING I N  SPTS SYSTEMS: 

2.1. Source I: Pure Difference Equations: 

Consider a general l inear .  s h i f t - i n v a r i a n t  d i f f e rence  
equation w i th  small parameters occuring a t  t he  r i g h t  end, 
l e f t  end or both ends. Then the  s t a t e  va r iab le  model 
becomes (Syrcos and Sannuti 83,  Naidu and Hao el,' 82), 

where, x l ( k )  and x ~ ( k )  are " s l o w "  and " f a s t "  s t a t e  vectors  
of  nl and nz dimensions respect ively,  u ( k )  i s  an r 
dimensional con t ro l  vector, h i s  s ingular  pe r tu rba t i on  
parameter and A ' s  and E ' s  are matrices of appropr ia te 
dimensional i ty. 

The three l i m i t i n g  cases of (1) r e s u l t  i n  



w h e r e  t h e  s m a l l  p a r a m e t e r  h a p p e a r s  i n  t h e  column of  t h e  
s y s t e m  m a t r i x ,  

( i i )  t h e  R-model ( i = O ;  j = l ) ,  

w h e r e  t h e  s m a l l  p a r a m e t e r  h a p p e a r s  i n  t h e  row of  t h e  s y s t e m  
m a t r i x ,  and  

( i i i )  t h e  D-model ( i=l ;  j=1), 

w h e r e  t h e  s m a l l  p a r a m e t e r  h is p o s i t i o n e d  i n  a n  i d e n t i c a l  
f a s h i o n  t o  t h a t  of  t h e  c o n t i n u o u s  s y s t e m s  d e s c r i b e d  by  
d i f f e r e n t i a l  e q u a t i o n s .  N o t e :  The  r e p l a c e m e n t  of > : = ( k )  by  
h x 1 ( k )  i n  model (3)  w i l l  r e s u l t  i n  model (2). 

2.2 S o u r c e  11: D i s c r e t e  M o d e l l i n s  of  Con t ino i l s  Systems: 

H e r e  e i t h e r  n u m e r i c a l  s o l u t i o n  or s a m p l i n g  of  
s i n q u l a r l y  p e r t u r b e d  c o n t i n u o u s  s y s t e m s  w i l l  r e s u l t  i n  
d i s c r e t e  models .  C o n s i d e r  t h e  s i n g u l a r l y  p e r t u r b e d  
c o n t i n u o u s  s y s t e m  as 

f i p p l y i n g  t h e  b l o c k - d i a g o n a l i z a t i o n  t r a n s f o r m a t i o n s  ( P h i  11 i p s  
8 0 1 ,  t h e  o r i g i n a l  v a r i a b l e s  x l ( t )  a n d  X Z ( ~ )  are e x p r e s s e d  i n  
t e r m s  of  t h e  d e c o u p l e d  v a r i a b l e s  x , ( t )  and  x + ( t )  as 

and  t h e  d e c o u p l e d  v a r i a b l e s  >:,(t) and > : 4 ( t )  are o b t a i n e d  i n  
t e r m s  of  t h e  o r i g i n a l  v a r i a b l e s  x 1 ( t )  and  :.:=(t) as  
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w h e r e  L and M s a t i s f y  

U s i n g  (6) and  (7) t o  t h e  c o n t i n u o u s  s y s t e m  ( 5 )  w i t h  a 
sample -ho ld  d e v i c e ,  w e  g e t  a d i s c r e t e  model ,  wh ich  d e p e n d s  
c r i t i c a l l y  on  t h e  s a m p l i n g  i n t e r v a l  T (Kando 8 6 ) .  I f  w e  
c h o o s e  t h e  f a s t  s a m p l i n g  T+ = h or t h e  s l o w  s a m p l i n g  T, = 
l C l / h J T +  ( w h e r e  C l / h J  is t h e  l a r g e s t  i n t e g e r  <: l / h ) ,  w e  ge t  
f a s t  or s l o w  6 a m p l i n g  model. I n  a p a r t i c u l a r  case, when T4 = 
h ,  w e  g e t  t h e  f a s t  s a m p l i n q  model as 

w h e r e  n d e n o t e s  t h e  f a s t  s a m p l i n g  i n s t a n t .  S i m i l a r l y ,  i f  T, 
= 1,  w e  o b t a i n  t h e  s l o w  s a m p l i n q  model as 

where  I:: r e p r e s e n t s  t h e  s l o w  s a m p l i n g  p o i n t ,  a n d  n = k C l / h l .  
Also,  t h e  D ' s  a n d  E's are r e l a t e d  w i t h  4 ' s ,  B's, L and  M. 

(1 )  t h e  f a s t  s a m p l i n g  model (9) can  b e  v i ewed  a6 t h e  
d i s c r e t e - t i m e  a n a l o g  ( e i t h e r  by  e x a c t  c a l c u l a t i o n  u s i n g  
e x p o n e n t i a l  m a t r i x  or by  u s i n g  E u l e r  a p p r o x i m a t i o n )  of  t h e  
c o n t i n u o u s  s y s t e m  

which  i t s e l f  15 o b t a i n e d  from t h e  c o n t i n u o u s  s y s t e m  ( 5 )  
u s i n g  s t r e t c h i n g  t r a n s f o r m a t i o n  t '  = t / h .  It is  u s u a l l y  
s a i d  t h a t  t h e  s i n g u l a r l y  c o n t i n u o u s  p e r t u r b e d  s y s t e m s  ( 5 )  
and  (10) are the  s l o w  t i m e  scale (t) a n d  t h e  f a s t  t i m e  s ca l e  
( t ' )  v e r s i o n s  r e s p e c t i v e l y .  

(11) t h e  s l o w  s a m p l i n g  model (10) is t h e  s a m e  a s  t h e  
s t a t e  s p a c e  model (2) o b t a i n e d  f rom t h e  s i n g u l a r l y  p e r t u r b e d  
d i f f e r e n c e  e q u a t i o n s  (Cornstock: and  H s i o  76, Naidu  a n d  R a o  
81). Thus  by d i s c r e t i r i n g  t h e  s i n g u l a r l y  p e r t u r b e d  
c o n t i n u o u s  s y s t e m  ( 5 )  w i t h  s l o w  and  f a s t  s a m p l i n g  rates, w e  
g e t  t w o  d i f f e r e n t  d i s c r e t e - t i m e  models .  

Time Scale P r o p e r t y  



The s l o w  s a m p l i n g  model (10) p o s s e s s e s  t h e  t w o - t i m e  
s c a l e  p r o p e r t y ,  i f  t h e  1 w Q e s t  e i g e n v a l u e  of E, is much 
s m a l l e r  t h a n  t h e  smallest e i g e n v a l u e  of  E,, t h a t  is  
( P h i l  1 i p s  801, 

w h e r e  t h e  a p p r o x i m a t e  values  f o r  E, a n d  Ez are 

S i m i a l a r l y ,  w e  c a n  o b t a i n  t h e  c o n d i t i o n  f o r  t h e  f a s t  
s a m p l i n g  model ( 9 )  t o  e x h i b i t  t h e  t w o - t i m e  scale p r o p e r t y  
( B l a n k e n s h i p  81, and  Kando 86). 

3. ANALYSIS I N  SPTS SYSTEHS: 

I n  t h i s  s e c t i o n ,  w e  a n a l y z e  t h e  s y s t e m s  u s i n g  s i n g u l a r  
p e r t u r b a t i o n  a n d  t ime-scale  a p p r o a c h e s ,  and  show t h a t  t h e  
t w o  a p p r o a c h e s  g i v e  i d e n t i c a l  r e s u l t s .  

W e  f i r s t  c o n s i d e r  a s i n g u l a r l y  p e r t u r b e d  d i s c r e t e  
c o n t r o l  s y s t e m .  Us ing  s i n g u l a r  p e r t u r b a t i o n  a p p r o a c h ,  o u t e r  
a n d  c o r r e c t i o n  s u b s y s t e m s  are o b t a i n e d .  N e x t ,  by t h e  
a p p l i c a t i o n  of t i m e  s ca l e  a p p r o a c h  v i a  b l o c k  d i a g o n a l i z a t i o n  
t r a n s f o r m a t i o n s ,  t h e  o r i g i n a l  s y s t e m  is d e c o u p l e d  i n t o  s l o w  
and  f a s t  s ~ i b s y s t e r n s .  To a z e r o t h  o r d e r  a p p r o x i m a t i o n ,  t h e  
s i n g u l a r  p e r t u r b a t i o n  and  t i m e  sca le  a p p r o a c h e s  y i e l d  
e q u i v a l e n t  r e s u l t s .  T h i s  r e s u l t  is s i m i l a r  t o  a 
c o r r e s p o n d i n g  r e s u l t  i n  c o n t i n u o u s  c o n t r o l  s y s t e m s  (Mahmoud 
a n d  S i n g h  81). 

3.1 Slow Samplinq Model: I n t i a l  V a l u e  P r o b l e m s  ( I V F )  

3.1.1 Si n q u l  ar F ‘ e r t u r b a t  i o n  Approach 

C o n s i d e r  t h e  s i n g u l a r l y  p e r t u r b e d  d i s c r e t e  s y s t e m  (2).  
W e  f o r m u l a t e  i n i t i a l  v a l u e  p rob lem and  n o t e  t h a t  s i m i l a r  
result c a n  b e  o b t a i n e d  f o r  boundary  v a l u e  p r o b l e m s  also.  

The o u t e r  ( d e g e n e r a t e )  s u b s y s t e m ,  o b t a i n e d  by z e r o t h  
o r d e r  a p p r o x i m a t i o n  ( i .e . ,  by making h=O) of (2) is 



Here, w e  note t h a t  i n  the  process of degeneration, x x ( l - . )  has 
re ta ined  i t s  i n i t i a l  cond i t ion  s x  ( 0 1 ,  whereas ~ ~ ( 1 : : )  has l o s t  
i t s  i n i t i a l  cond i t ion  x ~ ( 0 ) .  The boundary layer  i s  sa id  t o  
e x i s t  at k-0- I n  order t o  recover t h i s  lost  i n i t i a l  
condi t ion,  a co r rec t i on  subsystem i s  used (Naidu and Rao 
85)  . The transformations between the  o r i g i n a l  and 
co r rec t i on  var iab les are (assuming no inputs  f o r  
s i m p l i c i t y ) ,  

Using (15) i n  (21, t he  transformed system becomes, 

The zeroth order approximation (h=6) of (15) becomes, 

Rewr i t ing (171, w e  get, 

where, A,, = 422 - A z * A x r - = A x z :  

The t o t a l  so lu t i on  consis ts  o f  outer  so lu t i on  and co r rec t i on  
s o l u t i o n  a5 

For zeroth order approximation, t he  t o t a l  50 lu t i on  i s  given 
by 

where, >:zr 'O '  (1::) = hrxzcco> (k) F r o m  (14c), we note t h a t  
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Our c u r r e n t  i n t e r e s t  is o n l y  z e r o t h  o r d e r  a p p r o x i m a t i o n s .  
T h u s ,  f rom ( 1 4 )  a n d  ( l e ) ,  w e  get 

a n d  t h e  c o r r e c t i o n  f u n c t i o n s  as ,  

3.1.2 Time Scale Approach: 

L e t  us c o n s i d e r  a g a i n  t h e  s i n g u l a r l y  p e r t u r b e d  s y s t e m  
(2).  W e  now use t h e  t i m e  scale a p p r o a c h  and  o b t a i n  s l o w  
a n d  f a s t  s u b s y s t e m s  t o  a z e r o t h  o r d e r  a p p r o x i m a t i o n .  

F o r  d e c o u p l i n g  t h e  o r i g i n a l  s y s t e m  (2) i n t o  s l o w  a n d  
f a s t  s u b s y s t e m s ,  t h e  block:: d i a g o n a l i z a t i o n  t r a n s f o r m a t i o n s  
r e l a t i n g  t h e  d e c o u p l e d  v a r i a b l e s  i n  t e r m s  of t h e  o r i g i n a l  
v a r i a b l e s  are ( P h i l l i p s  BO, Kando and  Iwarumi 831, 

a n d  t r a n s f o r m a t i o n s  r e l a t i n g  t h e  o r i g i n a l  v a r i a b l e s  a n d  t h e  
d e c o u p l e d  v a r i a b l e s  are 

where  L ( n l x n z )  and  M ( n l x n z )  s a t i s f y  Ricca t i  t y p e  a l g e b r a i c  
e q u a t i o n s .  
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whose i t e r a t i v e  s o l u t i o n s  s t a r t  w i t h  i n i t i a l  v a l u e s  of L, = 
-A=xAxx-l and  Mi = hAll-lA;=. Ey u s i n g  t r a n s f o r m a t i o n s  (23) 
i n  (2), w e  g e t  the d e c o u p l e d  s l o w  a n d  f a s t  s u b s y s t e m s  as, 

where ,  A, = AI% - hAl2L; 

For z e r o t h  o r d e r  a p p r o x i m a t i o n ,  w e  g e t ,  

Us ing  (27) i n  (24) a n d  (261, w e  g e t  ( o m i t t i n g  i n p u t  f o r  
s i m p l i c i t y ) ,  

where  x,,(lZ) a n d  x+,(k) s a t i s f y  

S i m i l a r l y ,  u s i n g  (27) i n  (23), w e  o b t a i n ,  

Comparing t h e  s u b s y s t e m s  (21) and (22) a n d  t h e  s o l u t i o n  (20) 
o b t a i n e d  by u s i n g  t h e  s i n g u l a r  p e r t u r b a t i o n  a p p r o a c h  w i t h  
t h e  c o r r e s p o n d i n g  s u b s y s t e m s  (29) and t h e  s o l u t i o n  ( 2 8 i ,  w e  
f i n d  t h a t  t h e y  s a t i s f y  t h e  same e q u a t i o n s  w i t h  t h e  s a m e  
i n i t i a l  c o n d i t i o n s .  Hence, 

Thus,  w e  h a v e  s h o w n  t h a t  for a z e r o t h  o r d e r  a p p r o x i m a t i o n ,  
b o t h  s i n g u l a r  p e r t u r b a t i o n  and t i m e  sca le  a p p r o a c h e s  g i v e  
i d e n t i c a l  r e s u l t s .  



9 

T h u s ,  w e  h a v e  found  t h a t  f o r  a z e r o t h  o r d e r  
a p p r o x i m a t i o n  the e q u i v a l e n c e  of  t h e  s u b s y s t e m s  o b t a i n e d  by  
t h e  s i n p u l a r  p e r t u r b a t i o n  and  t i m e  sca le  a p p r o a c h e s .  T h i s  
r e s u l t  is a k i n  t o  t h a t  i n  t h e  s i n g u l a r l y  p e r t u r b e d  
c o n t i n u o u s  s y s t e m s .  I t  h a s  been s e e n  t h a t  s u c h  a n  
e q u i v a l e n c e  does exist f o r  f i r s t  a n d  h i g h  o r d e r  
a p p r o x i m a t i o n s  a lso (Kando 86). 

I n  t h e  s l o w  s a m p l i n g  model,  t h e  s o l u t i o n  c a n  be  
e x p r e s s e d  as a c o m b i n a t i o n  of discrete-t ime s l o w  a n d  f a s t  
s u b s y s t e m s .  H e r e ,  t h e  t w o - t i m e  scale p r o p e r t y  of  t h e  
d i s c r e t e - t i m e  i t s e l f ,  and  t h e  l o w e r  s a m p l i n g  ra te  are 
assumed.  H o w e v e r ,  i t  is n o t e d  t h a t  t h e  f a s t  p a r t  i s  t r e a t e d  
as d e a d - b e a t .  CIS a r e s u l t ,  t h e  s l o w  s a m p l i n g  model (9) is 
o b t a i n e d  f rom t h e  c o n t i n u o u s  sys t em ( 5 ) ,  t h e r e  is bound t o  
b e  p e r f o r m a n c e  d e g r a d a t i o n  be tween  t h e  t w o  s y s t e m s  o v e r  t h e  
i n t i a l  i n t e r v a l  o n l y .  

3.2 Boundary  V a l u e  P rob lems  (BVP) : 

The a n a l y s i s  of BVP is s i m i l a r  t o  t h a t  of  I V P ,  w i t h  f e w  
d i f f e r e n c e s  which  are d e s c r i b e d  below.  For b o t h  C- or R- 
m o d e l s ,  i f  t h e  boundary  c o n d i t i o n s  are x x  (N) and  x = ( O ) ,  t h e n  
t h e  b o u n d a r y  l a y e r  still o c c u r  a t  k=O, a n d  t h e  to ta l  series 
s o l u t i o n  still  r e m a i n s  t h e  same a s  (18) (Naidu  and  R a o  81, 
82, 8 5 a , b ,  Rao and  Naidu 81). H o w e v e r ,  t h e  a u x i l i a r y  
c o n d t i  o n s  are 

For t h e  D - m o d e l ,  i f  t h e  b o u n d a r y  c o n d t i o n s  a re  x 1 ( O )  
a n d  x,(N), t h e  t o t a l  series s o l u t i o n  is g i v e n  by  

a n d  t h e  b o u n d a r y  l a y e r  is s a i d  t o  exist a t  the f i n a l  p o i n t  k 
= N. 

3.3 F a s t  S a m p l i n s  Model: 

C o n s i d e r  t h e  f a s t - s a m p l i n g  model ( l o ) ,  which is  m o r e  
exact model t h a n  t h e  E u l e r  a p p r o x i m a t i o n  model of B l a n k e s h i p  
(81) a n d  R a j a g o p a l a n  and  Naidu (81) .  

The  e i g e n v a l u e s  of  t h e  S l o w  a n d  f a s t  p a r t s  of  t h e  f a s t -  
s a m p l i n g  model ( 1 0 )  are g i v e n  by 



1 0 

where L i s  t he  dichotomic so lu t i on  of a nonl inear alqebraic 
R i c c a t i  equation (NARE) , 

It i s  noted tha t  even i f  t h e  continuous-time system ( 5 )  
possesses the  two-time scale property, i .e., 

t he  f a s t  sampling model ( 1 0 )  does not  necessar i ly  s a t i s f y  
i t 5  two-time scale property, i.e., 

T h i s  i 5  i n  contrast  t o  the slow-sampling model (2) or  ( l o ) ,  
which preserves i t s  two-time scale proper ty  i n  the  
d i  s c r e t i i a t i o n  process. 

Using d boundary layer  method, t h e  so lu t i ons  of (10)  
are expressed as 

x l (n ,h )  = X l ( t , h )  + hxl,(n,h), t = hn, (37a 

where X z  ( t ,h), X z ( t , h )  and U(t,h) correspond t o  reduced 
system of the  continuous system ( 5 ) .  

Thus the  so lu t i on  (37) o f  ( 1 0 )  can be expressed as a 
hyb r id  combination of the  continuous s l o w  p a r t  which 
dominates the  system behavioiir over whole i n t e r v a l ,  and the  
discrete-t ime f a s t  p a r t  which dominates over the  i n t i a l  t ime 
only. Thus, t he  analys is  and design a re  performed 
e s s e n t i a l l y  i n  the  continuous-time domain. 

3.4 Steady State Analysis 

fin a l t e r n a t i v e  approach t o  de r i v ing  t h e  slow and f a s t  
subsystems i s  based on quasi-steady s t a t e  concepts 
(Eladreddin 82, Mahmoud 82, Tran and Sawan 83a,b, 84a,b,c). 
For a s tab le  l i n e a r  d isc re te  system having t h e  time-scale 
property, the  f a s t  modes corresponding t o  t h e  eigenvalues 
centered around the  o r i g i n ,  are important on ly  dur ing t h e  
f i r s t  few d i sc re te  i ns tan ts  ( t rans ien t  per iod) .  A f te r  t h a t  
period, they are n e g l i g i b l e  and the slow modes dominate the  
behavi our of the  d isc re te  systems. 
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Neglecting t h e  e f f e c t s  of f a s t  modes i s  expressed 
fo rmal ly  by l e t t i n g  xz(k+l) = ? c = ( k ) ,  Then, w e  get, 

Rearranging (381, w e  get the  slow subsystem as 

where, ~ ~ ( 1 : )  = ~ - ( k ) ,  ~ ( 1 : : )  and g ( k )  are t h e  S l O W  components 
of the  corresponding var iables i n  (21, and 

The f a s t  rjubsystem i s  obtained by making t h e  assumption t h a t  
, i r ( l : : )  = x,(k) = constant and gz(E:+l) = g = ( k ) .  From (2b) and 
(38~1, w e  get t he  f a s t  subsystem as, 

3.5 Control of  SPTS systems 

The t r a d i t i o n a l  con t ro l  problems such as s t a t e  feedback 
cont ro l  design -problem, eigenvalue assignment problem, 
observer design problem, are equal ly  app l i cab le  t o  d iscrete-  
t i  me systems w i  t h  SPTS (Phi  11 i p s  80, Mahmoud 82a, b , c ? 

Mahmoud and Singh 81, 84, 85, Mahmoud e t .  el., 85, 86, 
Fernando and Nicholson 83a,b, Kando and Iwazumi 83a,b, 84, 
85, Tran and Sawan 83a,b, 84a,b,c, Khorasani and A z i m -  
Sadjadi 87). However-, w e  w i l l  concentrate on the  optimal 
con t ro l  of these systems. 

3.5.1 Open-Loop Optimal Control 

Consider the  slow-sampling model (2) having two-time 
scale character. The performance index t o  be minimized i s  



where y ( k )  = C x s ( k ) ,  x 2 ( ) : ) l ;  S ,  and fi are  r e a l ,  p o s i t i v e  
semidef in i te  symmetric matrices of (nx+nx) dimensions, R i s  
a rea l ,  p o s i t i v e  d e f i n i t e  matrix of  order r x r ,  N Is a f i x e d  
integer i n d i c a t i n g  the  terminal or f i n a l  value of time. 

Usinq the  r e s u l t s  of optimal c o n t r o l  theory (Sage and 
White 771, t he  s t a t e  C x ~ ( k ) ,  x z ( k ) 3  and cos ta te  Cp,(k), 
p,(k) 3 equations are  obtained as 

(42) 
and the  optimal c o n t r o l  i s  given by 

where, W a d  = B*R-'E,: . i , j  = 1,2 

The 2(nx+n=) order two-point boundary value problem (TPBVP) 
represented by (42) which i s  i n  the  s i n g u l a r l y  perturbed 
s t ructure,  i s  t o  be solved. using t h e  boundary condi t ions,  
x l ( 0 ) ,  x = ( O ) ,  p,(N) and p,(N). 

The ser ies representat ions f o r  (41) are  given by 

where, x l o ( k ) ,  x = c o ( k ) ,  p x o ( k ) ,  and p=c,(k) correspond t o  t h e  
outer so lu t ion ,  >:xi ( k ) ,  x z '  (IC), p 1 ~  ( I : ) ,  and pzr ( k )  
correspond t o  the  i n t i a l  boundary layer  cor rec t ion ,  and 
xl+ ( I : : ) ,  x z +  ( I : : ) ,  pa+ (I::), and p2+ ( k )  correspond te +he f i n a l  
boundary layer  co r rec t i cn -  The d e t a i l s  are found i n  Kando 
and Iwazuzi  ( 8 3 b ) ,  Rajagopalan and Naidu (81),  Naidu and Rao 
(85a1, Ha0 and Naidu (82). 

3.5.2 Closed-Loop Optimal Control 

I n  t h i s  sect ion,  a two t ime scale d i s c r e t e  con t ro l  
system i s  considered. The closed-loop optimal l i n e a r  
quadratic regulator- f o r  the system requ i res  s o l u t i o n  of a 
fu l l -o rder  algebraic R icca t i  equation. A l t e r n a t i v e l y ,  t he  
o r i g i n a l  system i s  decomposed i n t o  reduced-order slow and 



f a s t  s u b s y t e m s .  The c l o s e d - l o o p  o p t i m a l  c o n t r o l  of t h e  
s u b s y s t e m s  r e q u i r e s  t h e  s o l u t i o n  of t w o  a l g e b r a i c  Hiccat i  
e q u a t i o n s  of  o r d e r  l o w e r  t h a n  t h a t  r e q u i r e d  f o r  t h e  f u l l -  
o r d e r  s y s t e m .  A c o m p o s i t e ,  c l o s e d - l o o p  ~ ~ i b o p t i m s . 1  c o n t r o l  
i s  fo rmed  f r o m  t h e  sum of t h e  s l o w  and  f a s t  f e e d b a c k  o p t i m a l  
c o n t r o l s .  The m a i n  a d v a n t a g e  o f  t h e  method i o  a 
c o n s i d e r a b l e  r e d u c t i o n  i n  t h e  overal l  c o m p u t a t i o n a l  
r e q u i r e m e n t s  f o r  t h e  cl osed-locrp o p t i m a l  c o n t r o l  of d i g i t a l  
s y s t e m s  (Naidu  77, Naidu  a n d  H a j a g o p a l a n  81, Rao and Naidu 
82, Naidu a n d  k a o  8 4 ,  85a, Clthman et. et., 85, K a r i d o  86, 
Na idu  and  P r i c e  86). 

4.2.1 Optimal  C o n t r o l  of O r i q i n a l  S y s t e m  

Consider-  t h e  l i n e a r  d i s c r e t e  s y s t e m  (2) h a v i n g  t w o - t i m e  
s ca l e  c h a r - a c t e r  

The p e r f o r m a n c e  i n d e x  t o  b e  minimized  is  

The c l o s e d - l o o p  o p t i m a l  c o n t r o l  is g i v e n  by (Sage and  
W h i t e  19771, 

w h e r e  P. of o r d e r  ( n l + n = ) x ( n x + n 2 ) ,  is  t h e  p o s i t i v e  d e f i n i t e  
s y m m e t r i c  s o l u t i o n  of  m a t r i x  a l g e b r a i c  R i c c a t i  e q u a t i o n  

The c l o s e d - l o o p  o p t i m a l  s y s t e m  is g i v e n  b y  

I n s t e a d  of  t a c k l i n g  t h e  o r i g i n a l  r e g u l a t o r  p r o b l e m  
d e s c r i b e d  by  (2) a n d  (45) d i r e c t l y ,  w e  decompose it 
a p p r o p r i a t e l y  i n t o  t w o  r e q u l a t o r  p r o b l e m s  f o r  s l o w  a n d  f a s t  
s u b s y s t e m s .  For t h i s ,  w e  f i r s t  need  t o  s e p a r a t e  t h e  
o r i g i n a l  p e r f o r m a n c e  i n d e x  i n t o  t h e  sum of  t w o  p e r f o r m a n c e  
i n d i c e s  f o r  S l o w  a n d  f a s t  subsy tems .  

The o r i g i n a l  p e r f o r m a n c e  i n d e x  (45) h a s  t o  b e  
r e p r e s e n t e d  as  t h e  s u m  of t h e  p e r f o r m a n c e  i n d i c e s  of  t h e  
s l o w  and  f a s t  s u b s y t e m s .  Using t h e  t r a n s f o r m a t i o n  (6) 
between t h e  o r i g i n a l  s t a t e  v a r i a b l e s ,  Ex, (1:) a n d  xZ(l : : )  1, and  
t h e  s u b s y s t e m  v a r i a b l e s ,  [>:,(I::) and  > : + ( I : : ) ] ,  i n  (451, a n d  
u s i n g  u, (1;) =us (I::) = LI (I::) , w e  g e t  
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where, Q- , )  Q-+ , Q+,, and Q**  are r e l a t e d  t o  Q s 3  v i a  L and 
M. 

Since J ha5 t o  be represented as the  s u m  of J, and J+, 
we need t o  neglect  (2-6 and Qi,. Then 

A s  we have neglected Q,+ and Q+,, i t  c e r t a i n l y  introduces an 
e r ro r ,  i n  t h a t  J w i l l  no t  be equal t o  the  s u m  of  J, and J+. 
To a f f e c t  t h i s ,  we need t o  readjust  GI,, and Q++ (Othman et. 
el., 8 5 ) .  

A s  t h i s  is simply a design or synthesis approach, we 
can f i r s t  se lec t  t h e  performance ind i ces  of  t he  subsystems 
and then formulate t h e  o r i g i n a l  performance indes. Thus, i f  

Using the t ransformat ion (7) between the  subsystem var iab les 
s , ( k )  and x + ( k )  and t h e  o r i g i n a l  system var iab les  x l ( k )  and 
x 2 ( k ) ,  we get 

where, is r e l a t e d  t o  Q,- and E++ v i a  L and M. 

Thus, i n  (51)- (53) ,  we f i r s t  se lec t  Q,r,, & + ,  and 
Rf, and then us ing C y  and M, w e  get @ and E. Here, w e  are 
able t o  decouple J and J, and J+ esac t l y  wi thout  any 
approximation. But  t he  o r i g i n a l  J i s  dependent on L and M, 
the  decoupling matrices, which may no t  be of p r a c t i c a l  
advantage. 

4.2.2 Optimal Control of Subsystems: 

Using the  transformation (61, we decompose the  
o r i g i n a l  system i n t o  slow and f a s t  s ~ t b ~ y ~ , t e m s  as 

We now t r y  t o  opt imize these slow and f a s t  subsystems 
w i t h  respect t o  t h e i r  corresponding performance ind ices  
(50a) and ( W b )  respect ively.  The slow regu la to r  problem 



c o n s i s t s  of  t h e  s l o w  subsytem ( 5 5 )  a n d  t h e  p e r f o r m a n c e  i n d e x  
(50a). The f a s t  r e g u l a t o r  problem c o n s i s t s  of t h e  f a s t  
s u b s y s t e m  a n d  t h e  pe r fo rmance  i n d e x  (Sob) .  For  c o n v e n i e n c e ,  
w e  w r i t e  Q,, = Q,: and Q++ = C!*. 

The o p t i m a l  f e e d b a c k  cont ro l  of t h e  s l o w  s u b s y t e m  is 
g i  ven b y  

w h e r e  P, is a p o s i t i v e  d e f i n i t e  s y m m e t r i c  s o l u t i o n  of a 
r e d u c e d  o r d e r  a l g e b r a i c  k i c c a t i  e q u a t i o n ,  

P, = A,P-CI, + b,R,-'B,TP,]-'A, + Q, (57) 

S i m i l a r l y ,  t h e  o p t i m a l  f eedback  c o n t r o l  of  t h e  f a s t  s u b s y t e m  
becomes 

where  F'+ is a p o s i t i v e  d e f i n i t e  symmetk ic  s o l u t i o n  of t h e  
r e d u c e d  o r d e r  a1 g e b r a i  c R i  c c a t  i e q u a t  i o n  

R e w r i t i n g  t h e  c o n t r o l  l a w s  (55) a n d  (97) as 

W e  n o t e  t h a t  t h e  control l a w s  (56 )  a n d  ( 5 8 )  are o p t i m a l  w i t h  
respect t o  t h e  s l o w  and  f a s t  s u b s y s t e m s  (54) and  (55)  o n l y .  
B u t ,  i t  is c o m p u t a t i o n a l l y  s i m p l e r  t o  d e t e r m i n e  t h e s e  
c o n t r o l s  l a w s  t h a n  t h e  op t ima l  c o n t r o l  l a w  (44) of  t h e  
o r i g i n a l  s y s t e m  Kando and Iwazumi 83). 

4.2.3 C o m p o s i t e  C o n t r o l :  

The c o m p o s i t e  con t ro l  is f o r m u l a t e d  as  t h e  5um of t h e  
s l o w  a n d  f a s t  f e e d b a c k  c o n t r o l s  g i v e n  by (56 )  a n d  ( 5 8 ) .  
T h a t  is 

Us ing  t h e  t r a n s f o r m a t i o n  (7) be tween  t h e  s l o w  a n d  f a s t  
v a r i a b l e 5  a n d  t h e  o r i g i n a l  v a r i a b l e s  i n  (62), w e  pet  

where ,  F,, a n d  F+= are  r e l a t e d  w i t h  F, v i a  L a n d  Pi. 



Using  t h e  c o m p o s i t e  c o n t r o l  (63) i n  t h e  o r i g i n a l  s y s t e m ,  

y , ( k + l )  = (A-BF,)y,(k) (64) 

I t  is known t h a t  m i n i m i z i n g  t h e  o r i g i n a l  p e r f o r m a n c e  inde::  
(44) w i t h  r e s p e c t  to t h e  c o m p o s i t e  s y s t e m  (64) r e s u l t s  i n  
t h e  s u b o p t i m a l  p e r f o r m a n c e  index  (Dthman et. el., 1985) ,  

where  F', is t h e  p o s i t i v e  d e f i n i t e  s y m m e t r i c  s o l u t i o n  of 
d i s c r e t e  Lyapunov e q u a t i o n  

I n  a n  e n t i r e l y  d i f f e r e n t  a p p r o a c h  t o  t h e  c l o s e d - l o o p  
o p t i m a l  c o n t r o l  of  d i s c r e t e  s y s t e m s  p o s s e s s i n g  t w o - t i m e  
scale c h a r a c t e r ,  t h e  R icca t i  c o e f f i c i e n t  m a t r i x  P ( k )  is 
p a r t i t i o n e d  i n t o  s i n g u l a r l y  p e r t u r b e d  s t r u c t u r e  and  t h e  
a n a l y s i s  is c a r r i e d  o u t  on t h e  Riccati e q u a t i o n  (Na idu  77, 
Naidu  and R a j a g o p a l a n  81, Kimura 83, L i t k o u h i  83. L i t k o u h i  
and  K h a l i l  84, 85, Naidu  and  kao 84, 85a, Kando and  Iwarumi 
8 3 b ,  Naidu a n d  P r i c e  86, Kando 86). The t h e o r y  of  SPTS i n  
a d a p t i v e  s y s t e m s  and  t h e  o p t i m a l  c o n t r o l  of  s t o c h a s t i c  
s y s t e m s  is c o n s i d e r e d  by  De lebeque  and  Q u a d r a t  (81 1 , Ioannou 
a n d  K o k o t o v i c  82, R a o  and Naidu (84)  

'5. M u l t i r a t e  R e q u l a t o r  Problem: 

S i n g u l a r l y  p e r t u r b e d  s y s t e m s  e x h i b i t  s l o w  and  f a s t  
b e h a v i o r s .  From a n  i n t u i t i v e  p o i n t  of v i ew,  t h e  measurement  
and  c o n t r o l  o f  t h e  s l o w  v a r i a b l e s  c a n  b e  d o n e  a t  l o w e r  
s a m p l i n g  rates i n  c o m p a r i s o n  w i t h  t h e  f a s t  v a r i a b l e s  
( L i t k o u h i  83, L i t k o u h i  and  K h a l i l  84, 85, Kando 86, Kando 
and  Iwazumi 86). 

C o n s i d e r  t h e  s i n g u l a r l y  p e r t u r b e d  c o n t i n u o u s  s y s t e m  (5) 
and  t h e  p e r f o r m a n c e  i n d e x  (45 ) .  by  t h e  p r o c e s s  of  
d e c o m p o s i t i o n  and  d i s c r e t i z a t i o n ,  t h e  c o n t i n u o u s  s y s t e m  ( 5 )  
is t r a n s f o r m e d  t o  f a s t  s a m p l i n g  model (10) or t h e  s l o w  
s a m p l i n g  model (9) d e p e n d i n g  upon t h e  d i s c r e t i z i n g  i n t e r v a l .  
S i m i l a r l y ,  t h e  p e r f o r m a n c e  index  (45) c a n  b e  t r a n s f o r m e d .  
Us ing  t h e  s l o w  ( f a s t )  s a m p l i n g  model (9) ( ( l o ) ) ,  a n d  t h e  
c o r r e s p o n d i n g  p e r f o r m a n c e  i n d e x ,  w e  a r r i v e  a t  t h e  s l o w  
( f a s t )  s a m p l i n g  r e g u l a t o r  p r o b l e m s ,  which are s o l v e d  
i n d e p e n d e n t l y .  

The s l o w  sampl i ng r e g u l a t o r  p rob lem is s o l v e d  by 
decomposing  i t  i n t o  s l o w  and f a s t  s u b p r o b l e m s ,  where  t h e  
f a s t  s u b p r o b l e m  e x h i b i t s  a dead-bea t  b e h a v i o r .  S i m i l a r l y ,  
t h e  f a s t  s a m p l i n g  r e g u l a t o r  p r o b l e m  is decomposed i n t o  S l o w  
and  f a s t  s u b p r o b l e m s  , w h e r e  t h e  sl o w  subprcsbl e m ,  of  



17 

continuous-time nature, dominates the  system behavior over 
t he  whole i n t e r v a l .  

I n  the  s i n g u l a r l y  perturbed continuous system, x x  ( t ,h)  
and x=( t ,h)  possess slow and f a s t  behaviors respect ive ly .  
Thus, the slow sampling r a t e  (T,) can be t o l e r a t e d  f o r  
measurement of  t he  slow var iab le x l ( t , h ) ,  i.e., x L ( t , h )  can 
be measured a t  slow r a t e  t = kT, (k:=1,2,..). On the  other 
hand, xs : ( t ,h )  i s  measured a t  t he  f a s t  r a t e  t = nT+ = 
k t 1 /h I T +  

By combining t h e  cont ro ls  of the slow subproblem of the  
slow sampling regu la to r  and the f a s t  subproblem o f  t he  f a s t  
sampling regulator ,  t he  m u l t i r a t e  contro l  i s  expressed a5 

Here, the s ta tes  x s  (kT,,h) and x=(nT+,h) are measurable. 
But, since the  s t a t e  x~(nT+,h)  can ' t  be measured between 
kCl/hlT+ < nT+ <: ( k+ l )C l /h IT+,  the above s t a t e  feedback 
cont ro l  can ' t  be implemented. This d i f f i c u l t y  i s  overcome 
by using the  estimates o f  x.(nT+,h). F i n a l l y ,  t h e  m u l t i r a t e  
cont ro l  i s  obtained as (L i tkouhi  and K h a l i l  85, Kando a b ) ,  

f i g u r e  shows the  basic ideas behind the  m u l t i r a t e  contro l .  

5. Conclusions: 

I n  t h i s  paper we t r i e d  t o  overview the  recent 
developments i n  the  theory of s ingular  per tu rba t ions  and 
t ime scales (SPTS) i n  d isc re te  contro l  systems. The focus 
has been i n  th ree  d i r e c t i o n s  o f  modeling, ana lys is  and 
contro l .  I n  model i ng, we reviewed sources of  s i  ngual a r l y  
perturbed d i f f e rence  equations i n  t h e i r  equivalent s t a t e  
space representations. Depending on the  d i s c r e t i t i n g  
i n t e r v a l ,  we a r r i v e  a t  slow-sampling model and fast-sampling 
model . The anal y s i  5 of two-t i  me scale systems brought out 
the cha rac te r i s t i c  features of order reduction, boundary 
layer  phenomena, s te t ch ing  transformations, and co r rec t i on  
series. I n  c o n t r o l l i n g  the  two-time scale.systerns, we 
addressed open-loop and closed-loop optimal con t ro l  
problems, h i g h l i g h t i n g  the  important issue of  m u l t i r a t e  
sampling. 
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-- 1- INTBODUCTION 

The Space Transportation System (STS) is presently 

used for delivering payloads to Low Earth Orbit (LEO). 

Several of these payloads are transferred to High Earth 

Orbit (HEO),  by expendable upper stage rockets that use 

either solid or liquid propellants. In order to support the 

deployment of a large number of satellites in Geosynchronous 

Earth Orbit (GEO) in an economical manner and to ultimately 

provide manned service, a reusable 'orbital transportation 

system is required. The Orbital Transfer Vehicle (OTV) is 

intended to transfer payloads from LEO to GEO and to return 

to LEO. 

Since the concept of aeromaneuvering was first 

introduced about two decades agol, numerous studies have 

shown that performance advantages in terms of larger 

payloads, reduction in expenditure of energy and 

reusability, can be achieved using aerodynamic forces 

generated through atmospheric pass to get necessary orbital 

changes (both apogee and inclination) on the return leg, as 

compared with all propulsive orbital changed. The concept 

of Aeroassisted Orbital Transfer Vehicle (AOTV), opens new 

mission opportunities, especially with regard to the 

initiation of a permanent space station. 

Further, in a recent report of the National Commission 

on Space, PIONEERING THE SPACE FRONTIER, the concept of 
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aerobraking for orbital transfer has been recognized as one 

of the seven critical technologies and recommended for 

demonstration projects in building the necessary technology 

base for pioneering the space frontiera. Broadly speaking, 

the two kinds of orbital transfer are coplanar orbital 

transfez4 and orbital transfer with plane changes. 

The coplanar transfer is from HE0 to LEO using 

atmosphere to decrease the energy and thereby decrease the 

velocity of the vehicle4. Here, lift modulation is the only 

means of controlling the flight path in the atmosphere, 

propulsion being used only outside the atmosphere. The 

application of the thrust produces impulsive velocity 

changes ( AV's) which are an indication of the fuel 

consumption for the orbital transfer. 

The basic principle of coplanar orbital transfer from 

HE0 to LEO is shown in Fig. 1. The in-plane tangential 

retroburn ( AVi) at HE0 injects the vehicle into an 

elliptical orbit entering the atmosphere at point E. As the 

vehicle flies through the atmosphere, some of the kinetic 

energy is converted to heat, and consequently upon leaving 

the atmosphere at point F, the apogee of the orbit is 

decreased to the distance 12. Finally at the new apogee, a 

second in-plane tangential burn ( A V z )  is executed to 

circularize and thereby achieve the desired LEO. The 
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minimum-fuel aeroassisted transfer is thus proportional tu 

the minimum characteristic velocity, AVi + AVz. 

The basic equations of'motion can be formulated in a 

variety of ways, depending on the independent variable. 

Using the time as the independent variable, we have6 

dr -- = Vsinv 
dt 

dV 
-- = -psi Vz . - (p/r2 )sinv 
dt 

To analyze the effects of aerodynamic forces acting on 

a vehicle in flight, it is necessary to model the planetary 

atmosphere in which the flight takes place. The important 

feature of the atmosphere affecting the performance of the 

vehicle is the density. Hence, the main concern in modeling 

the atmosphere will be to conveniently and accurately 

represent the density. 

A common way of representing the atmosphere is by a 

differential form7 

dp/p = (-l/H)dr = (-1/H)dh (2) 
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where H is called the scale height. Using this differential 

form for the density, the atmosphere is characterized as a 

locally exponential function. If the coefficient H, is 

considered a constant over some small interval of altitude 

(or radius), the integration of Eq. (2) yields 

In the earlier w o r k d r 6 ,  1962 US Standard Atmosphere* 

has been used, assuming a constant scale height over the 

entire interval of altitude of interest for AOTVs, ranging 

from 50 km to 120 km. Strictly speaking, the scale height 

is not constant over the entire interval, but changes 

depending upon the altitude. 

In the present case, our approach has two features: 

(i) As our interest of altitude is above 50 km, we try to 

use 1976 US Standard Atmosphere@ which is the same as 1962 

Standard Atmosphere below 50 km, but replaces the 1962 

Standard Atmosphere at the higher altitudes. 

(ii) In the exponential atmospheric model of Eq. ( 3 ) ,  

scale height has been assumed constant locally over a small 

interval of altitude. In other words, the scale height has 

been readjusted depending upon the interval (r-rs) used, 

instead of using a constant scale height over the entire 

interval of altitude ranging from 50 km to 120 km. This is 

believed to be more accurate to justify the integration of 
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Eq. (2) and hence the exponential atmospheric model of Eq. 

(3) - 

Using these two features, simulations are carried out 

for a coplanar orbital transfer vehicle. Firstly, we use the 

1962 US Standard Atmosphere with the following parameter 

values6 : 

p = 3.986~1014 mz/se&; m/S = 82 kg/m2 

rm = 6443 km; CL = 0.45 

p(v)  = i.ix10-5; CD = 1.54 

H = 4.8 km; re = 6378 knn 

Secondly, simulations are carried out with adjustable 

scale height, instead of a constant scale height of 4.8 km. 

These simulations, carried out for a constant lift-drag 

ratio, are represented in a series of plots shown in Fig. 2- 

6, with constant scale height (- line) and adjustable 

scale height ( + + + line). One would easily notice the 

appreciable difference between the two plots for altitude, 

velocity, flight path angle, density, heating effect, and so 

on. For example, in the altitude plot, a maximum discrepancy 

of 5800 meters occurs at about 110 seconds at an altitude of 

70 km giving an 8-percent error. 

Attempts are being made to carry out these simulations 

using (i) different formulations with altitude and energy as 

independent variables and (ii) shuttle-derived atmospheric 

datalo, 11. 
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Abstract: In the method of matched asymptotic expansions, a 
composite solution is constructed in terms of an outer solution 
an inner solution and a common solution. A critical examination of 
the method reveals that for a class of problems, the various terms 
of the common solution are formulated as polynomials in stretched 
variable without actually evaluating them from the outer solution. 
Incidentally, this also shows that the common solution of the 
method of matched asymptotic expansions is the same as the 
intermediate solution of singular perturbation method and that 
these two methods give identical results. Two illustrative 
examples are provided. 
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1. Introduction 

Singular perturbation problems, where suppression of a small 
parameter affects order of the problems, have been solved by a 
wide variety of techniques [l-5). Two of these techniques, 
singular perturbation method (SPM) [1,5] and the method of matched 
asymptotic expansions (MAE) [Z,3] have been independently 
developed to a reasonable level of satisfaction. Essentially, the 
SPM consists of expressing total solution in terms of an outer 
solution an inner solution and an intermediate solution. On the 
other hand, in the method of MAE, a composite solution is 
constructed as the outer solution, the inner solution and a common 
solution. These techniques have been so far thought to be 
somewhat independent and their advantages and disadvantages have 
been discussed in their applications to fluid mechanics and flight 
mechanics [S-91. 

In this paper, a critical examination of the method of 
matched asymptotic expansions reveals that the various terms 
of the common solution of MAE can be generated as polynomials in 
stretched variable without actually solving for them from the 
outer solution as it is done presently. This a l s o  shows that the 
common solution of the method of MAE and the intermediate solution 
of the SPM are the same and hence that these methods give 
identical results for a certain class of problems. Two 
illustrative examples are given. 

2. Method of Matched Asymptotic Expansions 

The method of matched asymptotic expansions has been 
extensively used in fluid mechanics [ 2 ] .  In this method, a 
composite solution is expressed as an outer solution, plus an 
inner solution, and minus a common solution. The outer solution 
is valid outside the boundary layer and the inner solution is 
valid inside the boundary layer. Then both inner and outer 
solutions are common over an overlap region. The common solution 

I I is obtained by using a matching principle, which is stated in a 

I 
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variety of ways. The matching principle also enables us to 
evaluate the undetermined constants of outer and inner. solutions. 

We describe briefly the method of MAE as applicable to 

initial value problems. Consider 

dx = f(x, 2 ,  E ,  t) dt 

dz 
dt 6- = g(x ,  2 ,  E ,  t) 

where x, and z are n-and m-dimensional state vectors respectively 
and E is a small positive parameter responsible for singular 
perturbation. We begin by representing the solutions in the form 
of a series in powers of E as 

0 CI) 
i x(t,s) = X(i'(t)2; z(t,s) = z ( i ) ( t ) s  

t i >  and determine the various terms x (t) and z"'(t) by means of 
formal substitution of (2) in (1) and comparison of coefficients 
of equal powers of E .  Then the following set of recursive 

equations are obtained. For zeroth order approximation, 

and for first order approximation, we have 

where the notation fo, and fi is used to indicate a l l  the terms 
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on the right hand side. Note that the zeroth order problem (3) is 
the same as the degenerate problem obtained by making - E  = 0 in 
(l), and a boundary layer is said to exist at t = 0. Since the 
series (2) corresponds to the solution outside the boundary layer, 
it is called an outer series. 

(0 ) The solution of (3) is obtained by using x ( t = O )  = x ( 0 ) ;  

and in general z ( t = O )  * z(0). On the otherhand, the solution 
of (4) poses a problem, since the initial condition x ( t = O )  is 
not yet known. Once x"'(t)  is solved for, z("(t) is 
automatically known from (4b). In order to relate the outer 
series (2) to the solution of (1) in the boundary layer, we use a 
stretching transformation 

(0 > 

(A) 

Then using (5) in (l), the stretched or inner 

- 
d.r = f[x(l), E ( T ) ,  E ,  E T ]  

This has inner series expansions of the form 

i = O  i= 0 

Substitution of (7) in (6) and comparison of 
in for zeroth order approximation as 

(5) 

problem becomes 

(6a) 

(7) 

coefficients result 
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and for first orderapproximation 

The inner problem (6)-(9) has initial conditions 

Still, we have not resolved the problem of 
initial value x("(t=O) of the  outer equation (4). 
by using a matching principle of the method of 
matching principle is stated as 

as 

determining the 
This is done 

MAE. Thus the 

inner expansion of outer solution = 
outer expansion of inner solution 

To include higher approximations, we have 

the jth-term inner expansion of the kth-term outer solution = 
the kth-term outer expansion of the j -term inner solution th 

(12) 

where j and k are any two integers. In practice, j is usually 

chosen as either k or k+l. Here, inner expansion of outer 
solution (x ) is obtained by extending the outer solution so that 
it approaches the boundary layer. This is done by first 

O i  
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transforming the independent variable t to that of the inner 
variable 7 = t/r: and then expanding it in powers of E . .  Similarly, 
the inner solution is extended so that it approaches beyond the 
boundary layer. This is done by first transforming the inner 
variable 7 to that of the outer variable t = E T .  The solution is 
then expanded in powers of E .  This results in (xL)*, the outer 
expansion of inner solution. A suitable choice of undetermined 
coefficients will be given by the matching principle 

(x")' = (XL)O 

To any order approximation, the composite solution 
given by 

0 o i  x c = x  + x  i -  ( x )  

0 = x + xi - (xi)o 

0 where x , and xi are the outer and inner solutions respectively 
to any order of approximation and (x")' = (xL)O is also called 
the common solution. Similar expressions can be given for z also. 

3 .  An Examination of Common Solution 

In this section, we will show that the common solution 
defined as the inner expansion of the outer solution is simply 
formulated as a polynomial in the stretched variable. The steps 
involved in obtaining the common solution are (i) express the 
outer solution in the inner variable 7, (ii) expand it around E 

0, and (iii) rearrange the resulting solution in powers of E .  

Thus, consider the outer solution as 

(0) 
xO(t) = x (t) + EX%) + . . . . . . .  

We express this outer solution in the inner variable 7 = t/r: as 
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Expanding (21) around E = 0, we get 

N O W  evaluation of function  ET) at E = o in T -  plane is 
the same as its evaluation at t = 0 in t-plane, and the partial 
derivative of function p(m), with respect to E in 7-plane is 
the same as its partial derivative w.r.t. t multiplied by I in 
t-plane - Thus, 

where, 
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Here, the dot over x denotes differentiation of x w. r. t. t . 
Similar expression can be obtained for the function 2 ,  Let us 
note that the intermediate solution of SPM is obtained by (i) 
expanding the outer solution around t = 0, (ii) expressing it in 
the inner variable 7, and (iii) rearranging the resulting 
solution in powers of E [ l , S ] .  Then, the common solution (18) 
of the method of MAE is found to be the same as the intermediate 
solution of the SPM. Thus, the outer and inner solutions being 
the same in the SPM and the method of MAE, we clearly see that 
these two methods give identical results. Essentially, this 
equivalence means that the expansion of the outer solution around 
t = 0 and transformation into .r-plane is the same as 
transformation of the outer solution into 7-plane first and then 
expansion around E =O. The main advantage of the present 
formulation of the common solution is that its various terms can 
be very easily generated as polynomials in 7 and hence one need 
not have explicit outer solution to arrive at the common solution. 

In this way, we suggest an improved method of MAE, where the 
outer and inner solutions are obtained as before and the common 
solution is generated simply as a polynomial in the stretched 
variable T ,  instead of evaluating it from the explicit outer 
solutions as it is done usually [ Z ] .  

I 

I 

4 .  Examples 
I 

We give two examples, one on an initial value problem, 
the other on a boundary value problem [lo]. 

Example 1: Initial Value Problem 

Consider a simple second order system so that we can 
explicit expressions for the solutions. 

and 

get 

dx - 
dt - 

- x - 2  dz 
dt 

E - -  = z(t=O) = b 



~ ~~ ~ 

Applying the method of MAE described in Section 2, we summarize 
the results as follows. The outer solutions corresponding to 
and (4) are 

The inner solutions corresponding to (8) and (9) are 

I -to> - < O )  x ( 7 )  = a; z ( T )  = -a + (a + b)e-7 
x ( T )  = (a + b) - a7 - (a + b)e 

z 

-a> -7 

-(:) 

( 7 )  2 -(2a + b) + a7 + [2a + b + (a + b)~]e-~ 

( 3 )  

Considering the two-term expansions only, the common solution 
for x is obtained as 

(CS) = (xi)" = (x")' (23) 

From ( 2 2 ) ,  w e  obtain (xi)" , the outer expansion of the inner 
solution by first expressing the inner solution in the outer 
variable t = ET and then expanding it around L: = 0. Thus 

x ' ( T )  = a + c[(a + b) - aT - (a + b)e-T] 

(xi)" = a(1 - t) + €(a + b) ( 2 4 )  

Next, from (21) , we obtain (x")', the inner expansion of 
outer solution as 

the 
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/ 

Alternatively, in the improved approach, we formulate (x")' as 

(0 )  
(XO)' = x (t=O) + €[x(l)(t=O) + 7X(O'(t=O)] 

Equating (24) and (25), we get the value of undetermined 
coefficient x"' ( o as 

xti)(O) = (a + b) 

Similarly for z ,  we have 

(CS) = (2')" = (2)"  

From (22), we obtain (z')", 
solution as 

the 

~ ' ( 7 )  = [-a + (a + b)e-Tl + 

outer expansion of 

~ [ - ( 2 a  + b) + a7 + {2a + b + (a + b)r)e-'] 

(2')" = -a(l - t) + g[-(Za + bll 

Next, we obtain (z")', the inner expansion of the 
solution as 

-t 
z " ( t )  = -ae 

(zo)' = -a(l - t >  + € 2  

+ r S [ z ( ' ) ( ~ )  + atle-' 

(i) 
(0) 

( 2 7 )  

(28) 

the inner 

(29) 

outer 

(30) 

Alternatively, in the improved .method, we formulate (zo)' as 

(2")' = z(O'(t=O) + E[Z(*'(t=O) + rd0)(t=O)] 
( A )  = -a + E [ Z  (0) + ~ a ]  

10 



Using (28)-(30), w e  get the value of 
coefficient z(i' ( o as 

The composite solution corresponding to (14) is 

-t 
xC(t,t) = ae + €[(a + b)(e-L - e-t/s) - ate-'] 

-t - i / E  zc(t,g) = -ae + (a + b)(l + t ) e  + 

- t /E  -t 
sC(2a + b)(e - 0 + ate-'] 

Example 2. Boundary Value Problem 

We present a boundary value problem 

the undetermined 

and obtain all 

solutions upto second order (two-term) approximation [lo]. 

Consider 

x(t=O) = a; x(t=l) = b dx a< = z (34) 

Since the boundary conditions are imposed on x only, it is 
enough if we summarize the solutions for x only. The outer 

solutions are 

(i-t > x'O)(t) = be 

x (i> (t) = [x"'(O) - bet]e-t 

The inner solution are 

(35) 



(36) 
I .  
t 

- ( a )  J 

- < O )  x ( I )  = be + (a - be)e-f 

x ( 7 )  = [be - be.r + {(a - be)7 - be}e-'] 

The common solution, obtained as outer expansion of 

inner solution, is 

(x')" = be(1 - t) + tbe (37) 

Similarly, the common solution, obtained as the inner expansion of 
the outer solution, is 

(x")' = be(1 - t) + cx<i'(0) 

Alternatively, in the modified method, we formulate 

(0) (x") '  = x ( t = o )  + t [ x " ) ( t = O )  + fX'"'(t=o)] 
I 

= be + ~ C x ' " ( 0 )  - be71 

= be(1 - t) + =x")(O) 

Let us note that the common solution (38) for 
easily generated as shown by (39). Equating (37) 
(39), we get the value of undetermined coefficient 
Finally, the composite solution is given by 

x,(t ,  E )  = [l + ~ ( 1  - t)]be'i-t' + 
- t / E  [(a - be)(l + t)- ~ b e l e  

5. Conclusions 

In this paper, a critical examination of the 

(39) 

(x")' can be 
with (38) or 
~"'(0) be. 

method of MAE 
have revealed that the terms of the common solution could be 

generated as polynomials in stretched variable without actually 
solving for them as it is done presently. We have also seen that 
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the common solution of the method of MAE is the same as the 
intermediate solution of the SPM and hence these two methods give 
identical results. Two examples have been given for 
illustration - 
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